

A North Carolina Field Study to Evaluate Greenroof Runoff Quantity, Runoff Quality, and Plant Growth

Amy Moran
Dr. Bill Hunt
Dr. Greg Jennings
www.bae.ncsu.edu/greenroofs

"We Bring
Engineering
to Life"

Special Thanks to

Mike Regans **Emory Knoll Farms** American Hydrotech Carolina Stalite Wayne Community College City of Kinston **NCDENR**

"We Bring Engineering to Life"

Stormwater Best Management Practices—BMPs

- Several Stormwater BMPs are in practice throughout North Carolina
 - Bio-retention Areas
 - Sand Filters
 - Wet Ponds
 - Riparian Buffers
 - Constructed Wetlands
 - Pervious Pavement
 - Greenroofs

Research Goals

- To help develop greenroof design standards in North Carolina through:
 - Estimating percent of precipitation retained
 - Curve Number
 - Determining reductions in peak flow of runoff
 - Rational C
 - Discovering any nutrient removal benefits
 - Determining which plants thrive in the NC environment
 - Finding an optimal soil depth for vegetation growth within the first year

"We Bring
Engineering
to Life"

Greenroof Field Site Locations

 Two greenroof research sites are located in eastern North Carolina. Both sites are within the

Neuse

River

Basin.

Wake County (home of NCSU)

"We Bring Engineering to Life"

Field Site Description: Goldsboro, NC

- Wayne Community College Greenroof
 - Constructed in May 2002
 - Extensive greenroof
 - 750 ft² area, relatively flat
 - 2 in. and 4 in. soil media depths
 - Hydrodrain 300TM Drainage Layer
 - Planted with a variety of Sedum and Delosperma species

"We Bring Engineering to Life"

Field Site Description: Kinston, NC

- Neuseway Nature Center Greenroof
 - Constructed in April 2002
 - Extensive greenroof
 - 290 ft², 3% pitched roof
 - 4 in. soil media depth
 - Floradrain FD40TM Drainage Layer
 - Planted with a variety of *Sedum* species

Monitoring the Sites

- Each site has:
 - Two Sigma 900MaxTM Automatic Samplers to retrieve water quality samples of greenroof and control roof runoff and measure runoff flow data
 - A tipping bucket rain gage to measure rainfall for each storm event
 - A container to collect rain samples for water quality analysis

"We Bring Engineering to Life"

Hydrologic Results: Water Retention

- Water retention was measured at each site for each rainfall event
 - The water retention for each rain event was determined as follows:

$$P_{retained} = P_{rainfall} - P_{runoff}$$

Where: $P_{\text{retained}} = Precipitation retained (in.)$

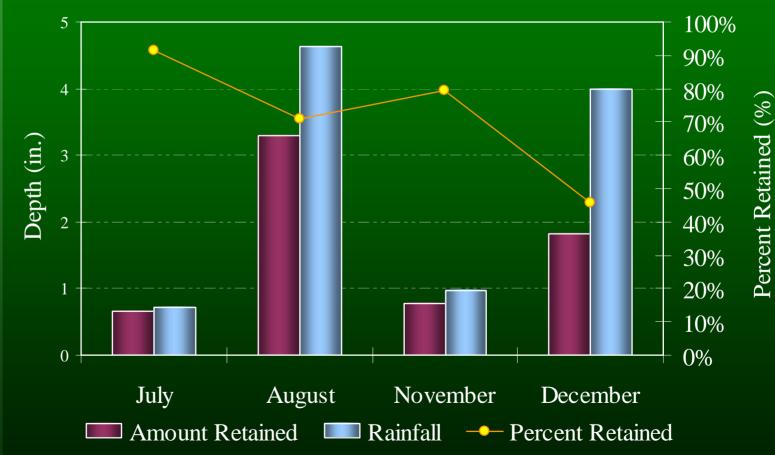
 $\overline{P_{rainfall}} = \overline{Precipitation of rain event (in.)}$

 P_{runoff} = Runoff depth from greenroof (in.)

Water Retention Data Summary

Goldsboro Greenroof (April – December 2003)

Total	Total Amount	Total Percent
Rainfall	Retained	Retained
35.5 in.	21.9 in.	62%


 Kinston Greenroof (July – August 2003 & November – December 2003)

Total	Total Amount	Total Percent
Rainfall	Retained	Retained
10.3 in.	6.5 in.	63%

"We Bring Engineering to Life"

Monthly Retention Rates in 2003: Kinston, NC

"We Bring Engineering to Life"

Hydrologic Results: Peak Flow Reduction

- Peak flow reduction was measured by comparing the greenroof runoff peak flow (gpm) with the peak rainfall rate onto the greenroof (gpm)
 - Flow rates were not measured from the control roof at each site

Average peak flow reductions of 70% to
 95% were observed at each greenroof site

"We Bring
Engineering
to Life"

Hydrologic Conclusions

- Both greenroofs retained a significant portion of the precipitation (α <0.05)
 - Average retention at Goldsboro greenroof was 62%
 - Average retention at Kinston greenroof was 63%
- Both greenroofs significantly reduced the peak flow of runoff (α <0.05)
 - Average peak flow reduction at Goldsboro greenroof was 78%
 - Average peak flow reduction at Kinston greenroof was 87%

Hydrologic Design

- Curve Number
 - A number ranging between 0 and 100 to describe the permeability of a land type
 - Used in the SCS Curve Number Method to predict the depth of runoff observed in a given watershed

$$RO = \frac{[P - (0.2)(S)]^2}{P + (0.8)(S)}$$

RO = Greenroof runoff (in.)

P = Precipitation (in.)

S = 1000/CN - 10

CN = Curve number

"We Bring
Engineering
to Life"

Hydrologic Design — CN

 Curve Numbers of 5 Largest Rain Events at WCC Greenroof in Goldsboro, NC

Date	Rainfall	Runoff	Retained	CN
4-9-2003	1.63 in.	1.11 in.	32%	95
7-13-2003	1.70 in.	0.69 in.	59%	87
7-23-2003	3.05 in.	1.88 in.	38%	88
10-28-2003	2.29 in.	0.71 in.	69%	79
12-10-2003	1.52 in.	0.71 in.	53%	90

Average CN = 88

Hydrologic Design

- Rational Coefficient
 - A decimal ranging from 0 to 1 to describe the permeability of a land use
 - Used in the Rational Method to predict the peak flow of runoff in small watersheds

$$Q = CIA$$

Q = Peak runoff (cfs)

C = Rational coefficient

I = Rainfall intensity (in./hr)

A = Watershed area (ac)

"We Bring
Engineering
to Life"

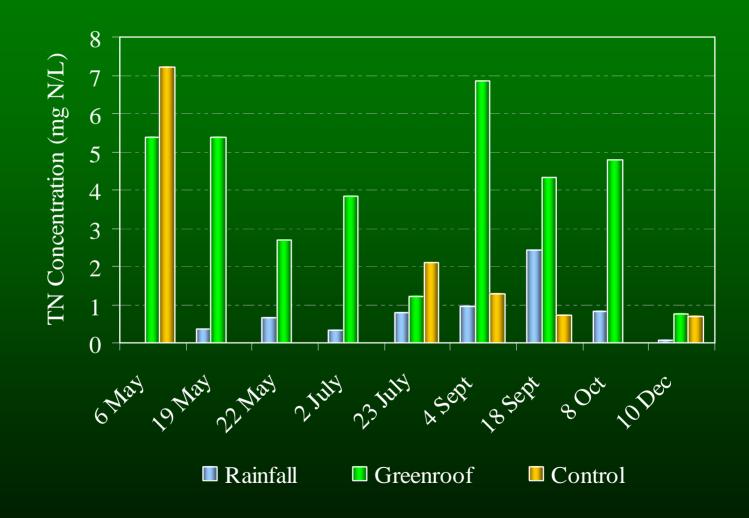
Hydrologic Design — Rational C

 Rational Coefficients of 5 Largest Rain Events at WCC Greenroof in Goldsboro, NC

Date	Rainfall	Runoff	Retained	C
4-9-03	1.63 in.	1.11 in.	32%	0.77
7-13-02	1.70 in.	0.69 in.	59%	0.35
7-23-03	3.05 in.	1.88 in.	38%	0.87
10-28-03	2.29 in.	0.71 in.	69%	0.21
12-10-03	1.52 in.	0.71 in.	53%	0.53

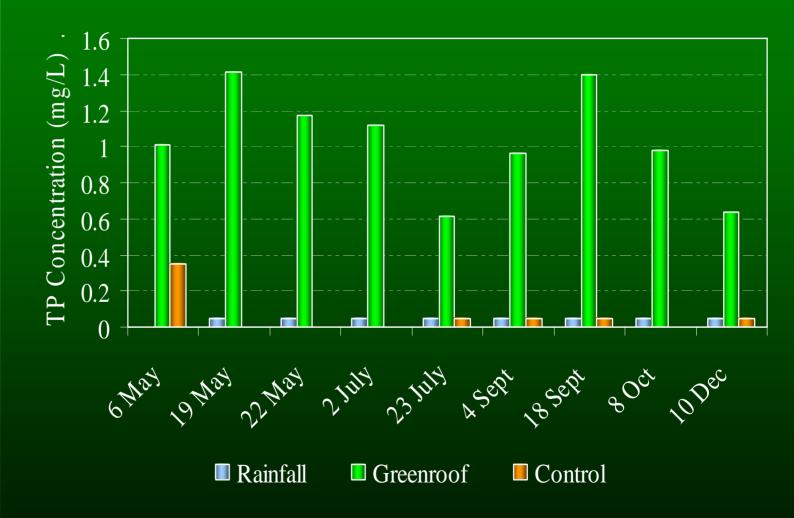
Average Rational C = 0.55

"We Bring Engineering to Life"


Water Quality Results

- Total Nitrogen (TN)
 - In most cases, the TN concentration was higher in the greenroof runoff than the rainfall and the control roof runoff
 - There was no consistent pattern observed in the TN mass loading observed in the greenroof runoff
- Total Phosphorus (TP)
 - The TP concentration and mass loading were consistently higher in the greenroof runoff

"We Bring
Engineering
to Life"


Water Quality Results: TN Concentration

"We Bring
Engineering
to Life"

Water Quality Results: TP Concentration



"We Bring
Engineering
to Life"

Soil Media Composition

- Carolina Stalite's Perma Till Lightweight Roof Garden Soil Mix
 - 5/16" Perma Till Expanded Slate
 - Approved Compost
 - Rootzone Sand

- Perma Till
- Rootzone Sand
- Compost

"We Bring
Engineering
to Life"

Design Recommendations

- The average CN for observed rain events greater than 1.5 in. was 88
- The average Rational C for observed rain events greater than 1.5 in. was 0.55
- No design recommendations can be made for nutrient removal
- A 4 in. deep greenroof will provide faster plant growth in the first year
 - Plant stabilization within the first year is the most important

Design Recommendations

- Plant species recommended for growth in eastern and central North Carolina
 - Sedum album
 - Sedum album murale
 - Sedum floriferum
 - Sedum reflexum
 - Sedum sexangulare
 - Sedum spurium fuldaglut
 - Delosperma nubigenum

Questions?

Please visit our website for more information

www.bae.ncsu.edu/greenroofs